

We will get started shortly!

WEBINAR: The Role of Protein in Healthy Aging

May 15, 2025: 1:00 – 2:00 pm CST 2:00 – 3:00 pm EST

Moderator

Brigitta Reinhardt General Mills Foodservice, Marketing

Today's Speaker

Heather Leidy, PhD

Associate Professor Dept. Nutritional Sciences & Dept of Pediatrics – Dell Med University of Texas at Austin <u>Heather.Leidy@Austin.utexas.edu</u>

The Role of Protein Intake in Healthy Aging

Associate Professor Dept. Nutritional Sciences & Dept of Pediatrics – Dell Med University of Texas at Austin <u>Heather.Leidy@Austin.utexas.edu</u>

Health Across the Lifespan

Despite an on-going emphasis on physical & mental strength, needs change as we age & require unique life-stage-specific strategies

Aging in America

In 2025: 17% of current population at 65+
By 2060: 25% will be over 65+

U.S. Population by Age Group (millions), 1900 to 2060

Source: U.S. Census Bureau, decennial censuses and vintage 2017 population projections (2020-2060).

Instapoll

What type of 'loss' do older adults fear the most?

- O Life
- O Independence
- o Finances
- O Loneliness
- O Being Safe

Instapoll – Motivating Goals of Older Adults

o Remain Independent (physically & mentally)

- Slow aging (decrease 'aches & pains')
- O Reverse chronic disease
- O Promote health & well-being

Aging & Health

THE IMPACT OF

Age-related involuntary loss of skeletal muscle mass & strength

Aging & Loss of Function

- Sarcopenia = decline in functionality
 - Sarcopenic obesity is more severe

Maintaining muscle health is critical

Aging in Women

Menopause & Increase Health Risks

How Healthy is the American Diet in Older Adults?

Healthy Eating Index (HEI)

Overconsumption:

- Saturated Fats
- Sodium
- Added Sugars

Underconsumption:

- Energy
- Fruits
- Vegetables
- Whole Grains
- Dairy
- Protein

How Healthy is the American Diet in Older Adults?

Risk of Nutrient Inadequacies

Overconsumption:

- Saturated Fats
- Sodium
- Added Sugars

Underconsumption:

- Energy
- Fruits
- Vegetables
- Whole Grains
- Dairy
- Protein

Role of Dietary Protein to Promote Healthy Aging

Benefits of Increased Protein Intake

https://pubmed.ncbi.nlm.nih.gov/38350303/: https://

Meta-analyses of RCTs assessing increased Protein Intake on muscle mass, strength, & function

Increased dietary protein via protein supplementation increases lean mass and (some) markers of strength and mobility in older adults as long as

Things to Consider

Resistance Training

Resistance Training Improves:

- Body Composition (Lean Mass)
- Muscle Strength
 - Upper Body
 - Lower Body
 - Hand-grip
- Body Pain
- Mental Health (including Depression)
- Social Function
- General Health

Health Status

Prevention vs. Treatment:

- Maintaining Health
- Catabolic Crisis Model

Protein

Dietary Factors:

- Quantity
 - Per eating occasion
 - Daily intake
- Supplementation vs. Dietary Pattern
 - Powders/Beverages
 - Whole Food
- Quality
 - Animal Proteins
 - Plant Proteins
- Distribution/Timing

Things to Consider: Protein Quantity

<u>Moore DR, et al. (2015)</u> assessing protein synthesis in young vs. older adults when varying protein intake (0 - 40 g)

Older adults require more protein to maximally stimulate muscle protein synthesis

Meta-analysis of RCTs assessing increased Protein Intake

on lean mass, muscle strength, and physical function with sub-group analyses on: Resistance Training (RT), Age, & Protein Quantity

Lean Mass							
Groups/Subgroups	SMD	95% Cl	# Trials	P-value			
All RCTs	0.22	0.15, 0.29	66	<0.01			
CON: +0.5 - 0.7	kg PRO	: +1.3 - 1.4 kg					

All RCTs Favors Contro Favors Protein

Meta-analysis of RCTs assessing increased Protein Intake

on lean mass, muscle strength, and physical function with sub-group analyses on: Resistance Training (RT), Age, & Protein Quantity

Lean Mass							
Groups/Subgroups	SMD	95% Cl	# Trials	P-value			
All RCTs	0.22	0.15, 0.29	66	<0.01			
Without RE	0.21	0.15, 0.58	6	NS			
With RE	0.22	0.14, 0.30	62	<0.01			

Favors Control Favors

Meta-analysis of RCTs assessing increased Protein Intake

on lean mass, muscle strength, and physical function with sub-group analyses on: Resistance Training (RT), Age, & Protein Quantity

Loan Mass

Groups/Subgroups	SMD	95% Cl	# Trials	P-value				
All RCTs	0.22	0.15, 0.29	66	<0.01				
Without RE	0.21	0.15, 0.58	6	NS				
With RE	0.22	0.14, 0.30	62	<0.01				
< 65 уо	0.25	0.16, 0.35	48	<0.01				
≥ 65 yo	0.13	-0.00, 0.28	14	0.06				

Meta-analysis of RCTs assessing increased Protein Intake

on lean mass, muscle strength, and physical function with sub-group analyses on: Resistance Training (RT), Age, & Protein Quantity

Lean Mass								
Groups/Subgroups	SMD	95% CI	# Trials	P-value				
All RCTs	0.22	0.15, 0.29	66	<0.01				
Without RE	0.21	0.15, 0.58	6	NS				
With RE	0.22	0.14, 0.30	62	<0.01				
< 65 yo	0.25	0.16, 0.35	48	<0.01				
≥ 65 yo	0.13	-0.00, 0.28	14	0.06				
With RE & PRO (<1.2 g/g/d)	-0.14	-0.56, 0.27	4	NS				
With RE & PRO (1.2-1.6 $g/g/d$)	0.17	0.06, 0.28	24	<0.01				
< 65 уо	0.15	-0.02, 0.31	15	0.07				
≥ 65 уо	0.20	0.02, 0.37	9	0.03				

With RE + 1.2-1.6 g PRO/kg/d

Meta-analysis of RCTs assessing increased Protein Intake

on lean mass, muscle strength, and physical function with sub-group analyses on: Resistance Training (RT), Age, & Protein Quantity

Groups/Subgroups	SMD	95% CI	# Trials	P-value	
All RCTs	0.20	0.08, 0.33	50	<0.01	
Without RE	0.14	-0.36, 0.64	4	NS	
With RE	0.21	0.08, 0.34	47	<0.01	
< 65 уо	0.19	0.03, 0.36	35	0.02	
≥ 65 yo	0.25	0.01, 0.48	12	0.04	
With RE & PRO (<1.2 g/g/d)	-0.01	-1.85, 1.83	2	NS	
With RE & PRO (1.2-1.6 $g/g/d$)	0.08	-0.10, 0.27	20	NS	-

Muscle Strength: Lower-Body

Little to no effect of protein supplementation on upper-body or hand-grip strength

Meta-analysis of RCTs assessing increased Protein Intake

on lean mass, muscle strength, and physical function with sub-group analyses on: Resistance Training (RT), Age, & Protein Quantity

Functional Tests							
Groups/Subgroups	SMD	95% Cl	# Trials	P-value			
All RCTs	0.15	0.00, 0.29	15	0.04			
Without RE	0.09	-0.08, 0.25	5	NS			
With RE	0.17	-0.03, 0.37	11	NS			

Functional Tests

Nutrition	Groups/Subgroups	SMD	95% CI	# Trials	P-value
JOURNAL ces.nutrition.org/	All RCTs	0.561	0.256, 0.865	16	<0.001
hout Vitamin D on Review and Meta-Analysis ^{Erfan} Sadeghi ⁵ , Sanaz Jamshidi ⁶ , ⁶ , Masoumeh Akhlaghi ^{1,2} ,	Healthy	0.113	-0.043, 0.269	9	NS
	Sarcopenia/Frailty	1.211	0.588, 1.834	7	<0.001

AN INTERNATIONAL REVIEW journal homepage: https://advan

Review

Whey Protein Supplementation with or without Vitamin D on Sarcopenia-Related Measures: A Systematic Review and Meta-Analysis

Advances in

Nasrin Nasimi ^{1,2}, Zahra Sohrabi ^{1,2}, Everson A. Nunes ^{3,4}, Erfan Sadeghi ⁵, Sanaz Jamshidi ⁶, Zohreh Gholami ¹, Marzieh Akbarzadeh ^{1,2}, Shiva Faghih ^{1,2}, Masoumeh Akhlaghi ^{1,2}, Stuart M. Phillips ^{3,*}

Role of Dietary Protein to Promote Healthy Aging

Protein supplementation is effective as a treatment strategy in older adults with sarcopenia or frailty but must be used in combination with resistance exercise

Dietary Protein in Older Adults: Weight Management

<u>Campbell W (2016) Systematic Review & Meta-analysis of 24 Energy Restriction-RCTs</u> Normal vs. High Protein (<1 vs. \geq 1 g/kg/d) Diets in **Older adults**

Weight Loss

Fat Mass Loss

Lean Mass Loss

Increased dietary protein promotes greater fat loss & greater lean mass preservation

Instapoll

Are older adults meeting their actual requirements for protein?

O Yes

o No

o l'm not sure

• Depends.....

Dietary Protein Intakes & Recommendations

Evidence-based Recommendations

• <u>Sarcopenia & Weight Management (P&T)</u>:

- Endurance Exercise: 3-4 x /wk
- Minimum Protein Intake:
 - ✓ 1.2 g⋅kg⁻¹⋅d⁻¹
 - ✓ 0.3 g·kg⁻¹·eating occasion
 - ~30 g pro
 - 3-4 times/d
- Optimal Protein Intake:
 - ✓ 1.6 g·kg⁻¹·d⁻¹
 - ✓ 0.4 g·kg⁻¹·eating occasion
 - ~40 g pro
 - 3-4 times/d

Things to Consider

Resistance Training

Resistance Training Improves:

- Body Composition (Lean Mass)
- Muscle Strength
 - Upper Body
 - Lower Body
 - Hand-grip
- Body Pain
- Mental Health (including Depression)
- Social Function
- General Health

Health Status

Prevention vs. Treatment:

- Maintaining Health
- Catabolic Crisis Model

Protein

Dietary Factors:

- Quantity
 - Per eating occasion
 - Daily intake
- Supplementation vs. Dietary Pattern
 - Powders/Beverages
 - Whole Food
- o Quality
 - Animal Protein
 - Plant Proteins
- Distribution/Timing

Instapoll

Which protein-factor has the greatest impact on health?

- O Quantity
- OQuality
- o Form
- o Timing/Distribution

Things to Consider: Protein Quantity (Implications)

<u>Giezenaar C (2016)'s meta-analysis of 59 studies</u> assessing appetite & food intake in young vs. older adults

Compared to Younger Adults, Older Adults:

- 20% \downarrow daily intake
- $25\% \downarrow$ morning hunger
- $40\%\downarrow$ post-meal hunger
- 40% 1 morning fullness

Older adults may find it difficult to consume recommended protein amounts

Leidy HJ, et al. (2017) (in middle-age adults)

Things to Consider: Protein Quantity (Implications)

<u>Giezenaar C (2016)'s meta-analysis of 59 studies</u> assessing appetite & food intake in young vs. older adults

Ben-Harachache S (2021)'s meta-analysis of 22 studies assessing impact of protein on appetite & daily intake

Compared to Younger Adults, Older Adults:

- 20% \downarrow daily intake
- 25% \downarrow morning hunger
- $40\% \downarrow$ post-meal hunger
- 40% 1 morning fullness

Energy Intake

.....maybe not,

Older adults may find it difficult to consume recommended protein amounts

Things to Consider: Protein Quantity (Implications)

Things to Consider: Protein Distribution

Distribution Patterns

<u>Phillips S, et al. (2016)</u>

(in older adults)

More frequent 'HP' meals is advantageous

Things to Consider: Protein Quality

 <u>Protein quality</u>, nutrient density, & accompanying micronutrients are vastly different within & between sources

		- A				
	Sirloin	Tofu	Beans	Egg	Nuts/Seeds	РВ
Oz Equivalents	1 ounce	¼ cup	¼ cup	1 Egg	½ oz	1 Tbsp
Energy (kcal)	50	40	60	80	80	90
Pro (g)	9	5	4	6	3	4
EAA Density Score	6.7	4.8	2.7	3.6	1.1	1.1
Serving Size	3 oz cooked	3 oz	½ cup cooked	1 Egg	1 oz	2 Tbsp
Energy (kcal)	150	80	110	80	170	190
Pro (g)	24	8	7	6	6	8

<u>When</u> protein quantity is sufficient, protein source effects are minor

Protein-rich Foods & Nutrient Adequacy in Older Adults

NHANES analyses examining eating habits among older adults that include high quality, protein-rich foods and nutrient adequacy

Nutrient adequacy improves with consuming protein-rich foods in older adults

Translating the Evidence

- Increased dietary protein can promote healthy aging through preservation of lean mass and improvements in functional strength.
- Protein include >1.2 g protein·kg⁻¹·d⁻¹ with 30-45 g of protein per eating occasion is recommended for older adults:
 - Selecting high-quality proteins included in beverages
 - Promoting breakfast and additional eating occasions
 - Including resistance exercise

Thanks & Acknowledgements

Funding:

- National Institutes of Health
- Beef Checkoff
- o National Dairy Council
- Egg Nutrition Center
- o National Pork Board

"The Leidy Lab"

General Mills Resources

CELEBRATE *the* BEST PART.

Need some menu ideas?

<u>Check out our Senior Living Event</u> <u>Calendar!</u>

Marketing Tools

- Point of sale danglers and clings
- Social toolkit with imagery

Check out our rebates page for these and more!

<u>Rebates | Earn and Save Foodservice</u> <u>Products (generalmillscf.com)</u>

soft, fluffy, tasty!

National Biscuit Rebate

Variety Pack Cereal Rebate (Non-Commercial Only)

Bulk Cereal Rebate (Non-Commercial Only)

Looking for more webinars and free CEU opportunities? <u>Sign up for our newsletter</u> to be the first to know for future events.

Thank you! Let's Connect!

Need a sales rep? Contact Us | General Mills Foodservice (generalmillscf.com)

© <u>@generalmillsfoodservice</u>

General Mills North America Foodservice

Website: bellinstitute.com

